

Journal of Chromatography B, 760 (2001) 307-313

JOURNAL OF CHROMATOGRAPHY B

www.elsevier.com/locate/chromb

Determination of amphotericin B, liposomal amphotericin B, and amphotericin B colloidal dispersion in plasma by high-performance liquid chromatography

Petra Egger, Romuald Bellmann, Christian J. Wiedermann*

Division of General Internal Medicine, Department of Medicine, Innsbruck University Hospital, Anichstrasse 35, A-6020 Innsbruck, Austria

Received 15 March 2001; received in revised form 5 June 2001; accepted 12 June 2001

Abstract

Amphotericin B is a potent polyene antifungal drug for intravenous treatment of severe infections. It is used as amphotericin B-deoxycholate and in order to reduce amphotericin B toxicity as lipid-formulated complex (liposomal or colloidal dispersion). A sensitive and specific analytical method is presented for the separation of lipid-complexed and plasma protein-bound amphotericin B in human heparinized plasma. This separation, which is required for pharmacokinetic studies, is achieved by solid-phase extraction (SPE) via Bond Elut C₁₈. The protein-bound amphotericin B has a higher affinity to the SPE material and is therefore retained, whereas the lipid-complexed amphotericin B is eluted in the first step. The recovery of the SPE was >75% for high concentrations and >95% for low concentrations. Quantification was performed by reversed-phase HPLC using a LiChrosorb-RP-8 column, UV detection (λ =405 nm) and a mixture of acetonitrile–methanol–0.010 *M* NaH₂PO₄ buffer (41:10:49, v/v) as mobile phase. The retention time for amphotericin B under the given conditions was 6.7 min. The calibration curves were found to be linear ($r \ge 0.999$) in two different ranges (5.0–0.50 µg/ml and 0.50–0.005 µg/ml). Intra- and inter-day precision and accuracy fulfilled the international requirements. No interference from other drugs (typical broad medication for intensive-care patients) or common plasma components was detected in >400 samples analyzed. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Amphotericin B; Antibiotics

1. Introduction

Amphotericin B is an antifungal antibiotic [1] produced as a fermentation by-product of *Streptomyces nodosus*, a soil actinomycete. The chemical structure (Fig. 1) shows a large lactone ring of 37

carbon atoms in which one side of the ring is a hydrophobic conjugated heptaene chain and the other side with seven hydroxyl groups is hydrophilic. The macrolide ring also contains a six-membered ketalic ring to which the aminosugar mycosamine is bonded through an α -glycosidic linkage. The amphipathic nature of amphotericin B (hydrophobic tail and hydrophilic head) allows it to be complexed with other moieties to alter its pharmacokinetics and pharmacodynamics. Amphotericin B binds to sterols in the cell membranes of both fungal and human

^{*}Corresponding author. Tel.: +43-512-5044-180; fax: +43-512-5046-74180.

E-mail address: christian.wiedermann@uibk.ac.at (C.J. Wiedermann).

(1R, 3S, 5R, 6R, 9R, 11R, 15s, 16R, 17R, 18S, 19E, 21E, 23E, 25E, 27E, 29E, 31E, 33R, 35S, 36S, 37S - 33 - (3 - amino - 3, 6 - dideoxy - b - D - mannopyranosyloxy) - 1, 3, 5, 6, 9, 11, 17, 37 - octahydroxy - 15, 16, 18 - trimethyl - 13 - oxo - 14, 39 - dioxabicyclo [33.3.1] nonatriaconta - 19, 21, 23, 25, 27, 29, 31 - heptaene - 36 - carboxylicacid

Fig. 1. The chemical structure of amphotericin B with its nomenclature.

cells. Its higher affinity for ergosterol, the sterol found in fungal cell membranes, over cholesterol, the sterol found in human cell membranes, allows amphotericin B to be used systemically [2-5].

Distribution of amphotericin B is believed to be multicompartmental in plasma. Amphotericin B is more than 90% protein-bound, primarily to lipoproteins. Metabolism of amphotericin B is unknown. Despite having many well-known side effects and toxicities [6] and the introduction of several antifungal agents of the imidazole class, amphotericin B remains the drug of choice for many serious systemic fungal infections [7]. Because of side effects and certain dose-limiting toxicities associated with conventional amphotericin B, lipid-based formulations [8] were developed to increase the tolerability of the drug without compromising its antifungal effects. These formulations contain novel drug delivery systems [9–11] designed to increase the therapeutic index. Available amphotericin B lipid formulations include liposomal amphotericin B (AmBisome), and amphotericin B colloidal dispersion (ABCD, Amphotec). Liposomal amphotericin B is amphotericin B intercalated into a unilamelar bilayer liposomal membrane [12], which has a diameter of less than 100 nm and consists of hydrogenated soy phosphatidylcholine, cholesterol, distearoylphosphatidylglycerol, and α -tocopherol [13]. ABCD is amphotericin B complexed in a 1:1 molar ratio with cholesteryl sulfate to form a colloidal dispersion [9].

The interpretation of serum or tissue amphotericin B concentrations is complicated by the fact that many assays to measure amphotericin B concentrations do not distinguish protein-bound amphotericin B from amphotericin B that is lipidformulated. The pharmacokinetics of amphotericin B following administration of amphotericin B lipid formulations are nonlinear and vary substantially depending on the lipid formulation administered [14]. Varying rates of release of amphotericin B from the carriers may account for the differences between the products. Plasma amphotericin B concentrations attained following administration of lipid-based amphotericin B generally are higher and the volume of distribution is lower than those reported for similar doses of conventional amphotericin B [15]. There are very few clinical studies comparing these formulations, and pharmacokinetic parameters for a given amphotericin B lipid formulation should not be used to predict the pharmacokinetics of any other amphotericin B lipid formulation (i.e., conventional or lipid based). The clinical relevance of pharmacokinetic differences between the various amphotericin B lipid formulations, however, has not been determined.

The present study describes the development of a liquid chromatographic method able to determine simultaneously concentrations of amphotericin B and liposomal amphotericin B or ABCD at relevant concentrations for pharmacokinetic studies and therapeutic monitoring.

2. Experimental section

2.1. Chemical and reagents

Acetonitrile, methanol and water (LiChrosolv; Merck, Darmstadt, Germany) were of HPLC gradient grade. Monobasic sodium phosphate was purchased from Sigma (Vienna, Austria). The Bond Elut C_{18} (100 mg) solid-phase extraction (SPE) cartridges were from Varian (Vösendorf, Austria). Amphotericin B (50 mg per vial) was obtained from Bristol-Myers Squibb (New York, NY, USA), ABCD (100 mg per vial) from Sequus Pharmaceuticals (Menlo Park, CA, USA) and liposomal amphotericin B (100 mg per vial) from NeXstar Pharmaceutical (Boulder, CO, USA).

2.2. Instrumentation

High-performance liquid chromatography (HPLC) was performed with a modular system HP 1100 (Hewlett-Packard, Wilmington, DE, USA) consisting of a variable-wavelength UV-visible detector (Model G1314A), an autosampler (Model G1313A), a quaternary pump (Model G1311A) and an on-line degasser (Model G1322A). Output data from the detector were integrated via Hewlett-Packard software (HP ChemStation Rev. A.06.03, Palo Alto, CA, USA).

A LiChrosorb RP-8 column (200×4.6 mm; 5 μ m; Agilent Technologies, Vienna, Austria) connected to a Zorbax SB-C₈ (12.5×4.6 mm; 5 μ m; Agilent Technologies) precolumn was used at ambient temperature. The mobile phase, delivered at a flow-rate of 0.7 ml/min, consisted of a mixture of acetonitrile–methanol–10 mM NaH₂PO₄ buffer (41:10:49; v/v). The injection volume was set to 100 μ l.

2.3. Preparation of external standards

The stock solutions with concentrations of 5.0 mg/ml were prepared by diluting each drug in HPLC gradient grade water. They were stored at -75° C. The stock solutions were added to 500 µl heparinized plasma (supplied by healthy volunteers) to provide concentrations of 5.0, 1.0, 0.5, 0.005, 0.025, 0.005 µg/ml of amphotericin B and were treated as described below.

2.4. Preparation of plasma samples

Blood samples from amphotericin B-, ABCD- or liposomal amphotericin B-treated patients were collected in heparin-containing test tubes (4 ml S-monovettes, lithium-heparin, 15 I.E. heparin/ml blood; Sarstedt, Nümbrecht, Germany), and plasma was separated at once with centrifugation at 350 g for 10 min. The plasma samples were then stored at -75° C until analysed.

The C_{18} SPE column was prerinsed with 1.0 ml methanol followed by 1.0 ml of water. Then the column was mounted to a new collecting tube. A 500-µl volume of heparinized plasma was pipetted

onto the SPE columns. The remaining plasma was washed from the column with 500 μ l of water. For a later analysis of the complexed amphotericin B the collecting tube (fraction A) was removed. The SPE C₁₈ cartridge was washed with 500 μ l of 45% aqueous methanol (for removing heparin and other maybe interfering compounds) with the help of centrifugation at 350 g for 2 min. The analyte was eluted from the column into a HPLC vial with 300 μ l of 60% aqueous acetonitrile (fraction B) with the aid of centrifugation at 350 g for 2 min. Then 150 μ l of water was added to the HPLC vial and vortexmixed for a few seconds. The analysis of this HPLC sample gave the amount of uncomplexed, proteinbound amphotericin B (fraction B) in plasma.

Another SPE C₁₈ column was prerinsed with 1.0 ml methanol followed by 1.0 ml of water. Fraction A was mixed with 1.0 ml of methanol (for breaking the lipid-formulated amphotericin B complex and for precipitating proteins), vortex-mixed for a few seconds and centrifuged at 7000 g for 15 min. The clear supernatant was removed completely and pipetted onto the cartridge. Subsequently the column was washed with 500 µl of 45% aqueous methanol with the aid of centrifugation at 350 g for 2 min. Amphotericin B was eluted from the column with 300 µl of 60% aqueous acetonitrile into a HPLC vial. A 150-µl volume of water was added and vortex-mixed for a few seconds. The analysis of this HPLC sample gave the amount of complexed amphotericin B (fraction A) in plasma.

2.5. Validation procedure

2.5.1. Linearity

The calibration curves were obtained by plotting the peak areas as a function of the respective concentrations (0.005, 0.025, 0.050, 0.50, 1.0, 5.0 μ l/ml) for each analyte. The slope, intercept and correlation r of each calibration curve together with the mean, standard deviation (SD), precision relative standard deviation (RSD) and mean relative error (MRE) were determined. The MRE was calculated as follows: MRE=(mean measured valuetheoretical value)/theoretical value. The minimum acceptable coefficient to establish linearity was set at 0.95 a priori.

Table 1

2.5.2. Intra-day and inter-day precision

The intra-day repeatability of the method was determined by analysis of three concentrations (0.005, 0.5, 5.0 μ g/ml) on the same day (*n*=5). Inter-day reproducibility was assessed on 5 different days with three concentrations (0.005, 0.1, 5.0 μ g/ml).

2.5.3. Recovery

The SPE recovery of amphotericin B from human heparinized plasma was determined for high (5.0 μ g/ml, 2.0 μ g/ml), medium (0.050 μ g/ml) and low (0.005 μ g/ml) concentrations by comparison of the results (*n*=5) from SPE and from unextracted pure amphotericin B directly injected into the chromatographic system.

2.5.4. Separation of protein-bound and lipidformulated amphotericin B via SPE

ABCD (0.50 μ g/ml), or liposomal amphotericin B (0.50 μ g/ml) was mixed with three different concentrations of amphotericin B (1.00, 0.50, 0.15 μ g/ml) and the amount of complexed and uncomplexed, protein-bound amphotericin B was measured. The experiments were repeated three times on 3 consecutive days.

2.6. Pharmacokinetics

Plasma concentration-time curves after injection of amphotericin B, ABCD or liposomal amphotericin B were evaluated with a noncompartmental model using Kinetica-2000 (InnaPhase, Champs-sur-Marne, France). The area under the concentration-time curve from time zero to time *n* of the last sample (AUC_{0-n}) was computed using the log linear method, trapezoidal when $C_n > C_{n-1}$. AUC_{0-n} is defined as AUC_{0-n} from t=0 to t_{last} (AUC_{0-n} is AUC₀₋₂₄ h).

3. Results and discussion

3.1. Solid-phase extraction recovery

After comparison of amphotericin B levels of extracted plasma standards and pure, unextracted water standards, the SPE recovery was found to be

Validation for protein-bound, lipid-unformulated amphotericin B

Concentration	% Recovery±SD	RSD			
(µg/ml)	(mean)	(%)			
Recovery of the solid-phase extraction column $(n=5)$					
5.000	76.2±3.5 4.6				
2.000	75.2±1.5 2.0				
0.050	95.9±2.6 2.7				
0.005	97.9±1.1 1.1				
Theoretical	Concentration found		MRE		
concentration ($\mu g/ml$)	(mean) ($\mu g/ml$)		(%)		
Intra-day precision and accuracy $(n=5)$					
5.000	4.660	3.1	-6.8		
0.500	0.509	1.8	1.8		
0.005	0.005	1.6	-0.6		
Inter-day precision and accuracy $(n=5)$					
5.000	4.832	6.0	-3.4		
0.100	0.106	4.7	6.0		
0.005	0.005	4.5	-2.8		

RSD and MRE were calculated from the average value of duplicates.

>75% for high concentrations and >95% for medium and low concentrations (Table 1).

3.2. Validation assay precision

In the described chromatographic method the retention time for amphotericin B in heparinized plasma was 6.7 min. The standard curves showed linearity over the two selected concentration ranges $(5.0-0.5 \ \mu g/ml \text{ and } 0.5-0.005 \ \mu g/ml)$. The divided calibration curve is a result of the two different SPE recoveries. The intra- and inter-day precision for low $(0.005 \ \mu g/ml)$, medium $(0.1 \ \mu g/ml)$ and high $(5.0 \ \mu g/ml)$ μ g/ml) concentrations are summarized in Table 1. The lowest concentration of material in samples used for validation was 5 ng/ml. No interference from other drugs or common plasma compounds (Fig. 2) was detected in >400 samples analyzed. The samples were collected from intensive-care patients with broad medication such as antibiotics (vancomycine, teicoplanin, β-lactame-anitbiotics including piperazillin, new generation cephalosporine and carbapenemes), gancyclovir, acyclovir and cyclosporin A, prograf, proton-pump-inhibitors (omeprazole),

Fig. 2. Comparison of HPLC chromatograms of blank human plasma (chromatogram A) and human plasma containing 0.005 μ g/ml amphotericin B (chromatogram B). A real patient sample is given in chromatogram C (0.175 μ g/ml protein-bound amphotericin B) and chromatogram D (0.048 μ g/ml complexed amphotericin B).

ranitidine, low-molecular-weight heparins, and vasopressor agents (noradrenaline).

3.3. Validation of the SPE separation

After intravenous injection of lipid-formulated amphotericin B in humans, the active substance can exist in two forms (I) as colloidal dispersion/liposomes or (II) plasma-dissolved, mostly associated with lipoprotein. Amphotericin B cannot exist as free entity in plasma. We have found a way to separate the two forms. The lipid-formulated substance is not retained on a C₁₈ SPE cartridge, while the proteinbound amphotericin B is retained there. In two sets of experiments with ABCD and liposomal amphotericin B, we have shown the correct separation of the two forms via Bond Elut columns with RSD \leq 11.2% (Table 2).

3.4. Application to pharmacokinetic studies of intensive-care patients

The method was further validated by comparing our pharmacokinetic data obtained in a persistently febrile neutropenic patient with normal renal function on day 2 of empiric antifungal treatment receiving intravenous infusions of 60 mg (1 mg/kg body mass) of conventional amphotericin B daily with the published pharmacokinetic literature. Very good agreement between previously published data and pharmacokinetic results using the method of amphotericin B measurement described here was observed, with peak level of 1.74 µg/ml (t_{max} =0.5 h) and, after a rapid initial fall, plateau level of 0.81 µg/ml [15] (Fig. 3).

The method described appears suitable for the simultaneous determination of the protein-bound and lipid-complexed fractions of liposomal amphotericin

	1.00 μg/ml A +0.50 μg/ml B	0.50 μg/ml A +0.50 μg/ml B	0.15 μg/ml A +0.50 μg/ml B
Amphotec			
Mean (A)±SD	0.952 ± 0.034	0.504 ± 0.005	0.143 ± 0.005
Mean (B)±SD	0.483 ± 0.024	0.429 ± 0.035	0.431 ± 0.045
RSD (%) (A)	3.6	0.9	3.3
RSD (%) (B)	4.9	8.2	10.5
AmBisome			
Mean (A)±SD	0.932 ± 0.028	0.497 ± 0.006	0.143 ± 0.015
Mean (B)±SD	0.463 ± 0.052	0.448 ± 0.049	0.441 ± 0.029
RSD (%) (A)	3.0	1.1	10.8
RSD (%) (B)	11.3	10.8	6.5

Table 2 Separation of amphotericin B (A) and lipid-formulated amphotericin B (B) via SPE

B or ABCD in plasma. In a persistently febrile neutropenic patient with impaired renal function of plasma creatinine levels around 2.0 mg/dl and concomitant potentially nephrotoxic medication, 300 mg of liposomal amphotericin B (4.5 mg/kg body mass) were administered daily over a period of 4 h; serial plasma samples were obtained on day 11 of treatment (Fig. 4). Peak plasma level of total amphotericin B which is the sum of liposomal and protein-bound fraction was 4.09 μ g/ml (t_{max} =4 h), and the AUC_{0-n} was 36.53 mg h/l, which was

similar to what was reported previously for total amphotericin B plasma levels [15]. Amphotericin B was circulating in both a protein-bound and a liposomal form, the clearances of which differed. Data support the concept of different compartmental distribution of the two forms of amphotericin B.

In a third patient, 300 mg of ABCD (4.0 mg/kg body mass) was administered daily over a period of 4 h; serial plasma samples were obtained on day 21 of treatment (Fig. 5). Here we found a lower total peak plasma level with 1.21 μ g/ml (t_{max} =4 h), and

Fig. 3. Representative plasma concentration–time curve for an intensive-care patient after 60 mg of amphotericin B ($d_2=2nd$ day of administration), where AmB is used as abbreviation for amphotericin B.

Fig. 4. Representative plasma concentration-time curve for an intensive-care patient after 300 mg liposomal amphotericin B $(d_{11}=11$ th day of administration).

Fig. 5. Representative plasma concentration-time curve for an intensive-care patient after 300 mg ABCD (d_{21} =21st day of administration).

AUC_{0-n} was 12.85 mg h/l. We have determined lower colloidal share, which rapidly declined to zero. The protein-bound form showed higher values, which fall more gradually to plateau and even at 0.5 μ g/ml, which is within the therapeutic range.

In conclusion, the data presented here provide an analytical means to determine the lipid-formulated amphotericin B concentrations in plasma and may allow investigation into their pharmcokinetics with respect to both efficiency and side effects related to amphotericin B therapy.

References

- [1] K.M. Abu-Salah, Br. J. Biomed. Sci. 53 (1996) 122.
- [2] V. Joly, R. Farinotti, L. Saint-Julien, M. Cheron, C. Carbon, P. Yeni, Antimicrob. Agents Chemother. 38 (1994) 177.
- [3] I. Gruda, N. Dussault, Biochem. Cell Biol. 66 (1988) 177.
- [4] A.S. Janoff, L.T. Boni, M.C. Popescu, S.R. Minchey, P.R. Cullis, T.D. Madden, T. Taraschi, S.M. Gruner, E. Shyamsunder, M.W. Tate, Proc. Natl. Acad. Sci. USA 85 (1988) 6122.
- [5] J. Bolard, P. Legrand, F. Heitz, B. Cybulska, Biochemistry 30 (1991) 5707.
- [6] V. Fanos, L. Cataldi, J. Chemother. 12 (2000) 463.
- [7] S.H. Khoo, J. Bond, D.W. Denning, J. Antimicrob. Chemother. 33 (1994) 203.
- [8] A. Wong-Beringer, R.A. Jacobs, B.J. Guglielmo, Clin. Infect. Dis. 27 (1998) 603.
- [9] M.J. Ostro, P.R. Cullis, Am. J. Hosp. Pharm. 46 (1989) 1576.
- [10] G. Lopez-Berestein, Ann. N.Y. Acad. Sci. 544 (1988) 590.
- [11] G. Lopez-Berestein, Antimicrob. Agents Chemother. 31 (1987) 675.
- [12] O. Ringden, J. Tollemar, G. Tyden, Lancet 339 (1992) 374.
- [13] G. Gregoriadis, C. Davis, Biochem. Biophys. Res. Commun. 89 (1979) 1287.
- [14] R. Patel, Mayo Clin. Proc. 73 (1998) 1205.
- [15] V. Heinemann, D. Bosse, U. Jehn, B. Kahny, K. Wachholz, A. Debus, P. Scholz, H.J. Kolb, W. Wilmanns, Antimicrob. Agents Chemother. 41 (1997) 1275.